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Abstract. Sepsis is the leading cause of death in the intensive care unit
worldwide. Despite having many environmental factors, septic shock can
be significantly attributed to cytokines which are specialized proteins
that regulate inflammation in the body. Understanding the correlation
between the cytokine levels, as well as genes that code for them, is crucial
in reducing the rates of mortality. We performed genome-wide association
studies (GWAS) to determine which single nucleotide polymorphisms
(SNPs) are correlated with mortality of patients with septic shock. We
also identified SNPs which are correlated with serum concentrations of
various cytokines, determined the cytokines correlated with patient mor-
tality, and trained various machine learning classifiers. We have identified
several SNPs that correlate with mortality rates including one in the gene
of a protein that is found to regulate cytokine levels.

1 Introduction

Sepsis is a serious medical condition usually caused by bacterial infection. It
is the leading cause of death in the intensive care unit worldwide. On average,
one of every 18 deaths in Canada occurs due to sepsis and septic shock [1].
Despite having many external environmental factors, septic shock can be greatly
attributed to cytokines, which are special proteins in the body that regulate
inflammation. Understanding the correlation between the cytokine levels as well
as genes that code for them is crucial in developing therapy and reducing the
rates of mortality.
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Previous studies have shown correlations between various cytokine levels and
death after 28 days in patients in septic shock [2]. However, the existence of a
correlation does not imply that increased levels of cytokines cause death in these
patients; there may be external factors which cause both. To rule out these
hidden variables, one can perform genome-wide association studies (GWAS),
where single nucleotide polymorphisms (SNPs) are found that correlate with
both increased levels of particular cytokines and death. If a SNP is found to
correlate with higher levels of a particular cytokine, we can infer that it is likely
that the SNP causes increased levels of that cytokine. Of course, it is possible that
such a SNP affects a different function, e.g. increased levels of a different protein
which then causes an increased likelihood of death, but such an investigation is
beyond the scope of this study and we will operate under the assumption that
these SNPs modify no factors other than cytokines. With this assumption in
mind, if it is also the case that the SNP is associated with increased likelihood
of death, then the cytokines which correlate with both the SNP and death cause
death, since the SNPs only modify cytokine levels. Figure 1 visually depicts this
reasoning.

Fig. 1: A causal relationship between cytokines and death can be inferred if
there is a correlation between certain SNPs and particular cytokines, as well as
a correlation between these SNPs and death, since SNPs can only act through
cytokines.

2 Method

Our dataset was from the VASST trial [3] at the St Pauls hospital in Van-
couver, BC, Canada, on the effects of a certain vasopressin treatment on health
outcomes, which included cytokine concentrations and 1.2 million SNP measure-
ments from 330 patients with septic shock. We performed GWAS to determine
which SNPs are correlated with mortality of the patients, as well as SNPs which
are correlated with serum concentrations of various cytokines. We also deter-
mined which cytokines are correlated with mortality of the patients by using
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statistical analysis and training various machine learning classifiers to predict
whether a septic patient is likely to die within 28 days based on their cytokine
concentrations.

The correlation results for SNPs with death and cytokine levels were inter-
sected in order to obtain the SNPs that were correlated with both death and
various cytokine levels. This was performed by eliminating all SNPs that did not
meet a threshold p-value of 5×10−5 for both GWAS results. Only the cytokines
that were found to significantly correlate with patient survival were considered.
This enabled us to determine a list of SNPs that were related to the key cytokines
correlating with death. The individual SNPs were then queried on the UC Santa
Cruz Genome Browser to determine its location in the human genome. SNPs
located in coding regions were further studied to reveal potential genomic mech-
anisms of any causal relationship found between certain cytokines and patient
mortality.

3 Results

3.1 Correlation between cytokines and death

For each cytokine, we perform Student’s t-test to determine whether the cytokine
levels are significantly different in patients who have survived past 28 days, versus
those who have not. The results are summarized in Table 1.

To further examine the correlation between cytokine level and survivability,
for each cytokine, we use logistic regression to fit the probability of survival as
a function of cytokine level, and use it to build a predictor for survivability. We
split our dataset into 70% training and 30% testing. Since we have many outliers,
we use L1 loss in order to build a most robust model. More weight is given to
the data points where the patients have died, since we have fewer of them.

The accuracy of these models varies. The best two, using GRO (test accuracy
0.71429) and IL8 HW (test accuracy 0.69388) respectively, are given in Figure
2. The error produced by these models are one-sided, in the sense that it is more
likely to predict “survival” for the patients who have died, than the other way
around. It is also much more accurate on the regime where cytokine level is high.

Additionally, we attempt to create a more accurate predictor for survivability
by using more sophisticated machine learning (ML) techniques, which use multi-
ple cytokines simultaneously and allow us to explore the interaction between the
cytokines. We have considered multivariable logistic regression, decision trees
ranging from depth of 1 to 15, and neural networks with various architectures.
Although we could obtain very high training accuracy, none of these models
yields test accuracy of higher than 70%. This suggests that these models are suf-
fering from overfitting. With a relatively small dataset, and considering the high
amount of noise due to inherent randomness associated with human biology, this
is as good as we can reasonably expect.

We would also like to visualize the possible interaction between cytokines.
For each pair of cytokines, we produce a 2D plot displaying the location of each
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Cytokines t-value p-value

GRO -4.275651 0.000027
IL8 HW -4.04777 0.00007

IL7 -3.46039 0.00064
EOTAXIN -3.42037 0.00073

MIP1B -3.33234 0.00100
MIP1b HW -3.29874 0.00112

MCP1 -3.29810 0.00112
IL8 -2.90489 0.00401
IL4 -2.67821 0.00791

IL1B -2.54473 0.01156
MIP1A -2.41036 0.01668

HSP70 HW -2.36953 0.01859
TGFA -2.30090 0.02225
MCP3 -2.02820 0.04363
IL17 -1.95551 0.05167

GCSF -1.95199 0.05209
IL1RA -1.94257 0.05322
IL15 -1.88879 0.06011

VEGF -1.81033 0.07148
FGF2 -1.78716 0.07516

FRACTALKINE -1.73725 0.08361
MDC 1.73276 0.08441

IFNA2 -1.63332 0.10370
IL3 -1.55221 0.12192

MIP1a HW -1.45076 0.14814
FLT3L -1.44079 0.15093

Cytokines t-value p-value

IL2 -1.40930 0.16003
CD40L -1.40811 0.16038
EGF -1.34633 0.17945
IL1A -1.24536 0.21420

IL1a HW -1.23291 0.21880
IL13 -1.18334 0.23783

Resistin HW 1.15751 0.24820
GMCSF -1.13524 0.25739
TNFA -1.04183 0.29853

GranzymeB HW 1.00870 0.31412
IL12P70 -0.81889 0.41365

Thrombospondin1 HW 0.80280 0.42287
Lactoferrin HW 0.71628 0.47451

IFNG 0.70437 0.48188
Elastase2 HW 0.69806 0.48581

IL9 -0.45252 0.65129
IL5 -0.44668 0.65550

IL12P40 -0.40331 0.68707
IL6 0.37954 0.70462

IP10 -0.36508 0.71537
IL10 0.35217 0.72501

IL2RA -0.31630 0.75204
MMP8 HW 0.24843 0.80401
NGAL HW -0.14492 0.88490

TNFB 0.02158 0.98281

Table 1: Result of t-test on the correlation between cytokine level and death.
There are 14 cytokines with p < 0.05.
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Fig. 2: Visualization of logistic regression result with (a) GRO and (b) IL8 HW
respectively.

patient in the plane spanned by the two cytokines. The two interesting ones
are displayed below. We also perform principal component analysis, keeping two
dimensions, and plot the principle components of the data points. These plots
(examples shown in Figure 4) seem to indicate that most data points cluster
near zero cytokine level, and patients with high level of multiple cytokines are
less likely to survive. However, we could not pick out any trend about interacting
cytokines.

Fig. 3: 2D visualization of distribution of data points. Note that some red points
are hidden underneath the blue cluster at bottom right.

We have also attempted unsupervised learning by clustering, as well as k-
nearest-neighbor. However, neither gives us satisfactory results.
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Fig. 4: Principle component analysis (PCA) of the data points. Only the 14
cytokines that were found to correlate strongly with survivability were used.

3.2 Statistical fitting and correlation of Cytokine levels to death
rate

After 14 cytokines have been identified, we perform further analysis of the cy-
tokine levels and their association to death. We plot the histogram of number
of people who died on each day (Figure 5). As expected we see that number of
people who survive the 28 day mark are approximately 67% of the whole pool
of people.

For the purposes of this work, we have excluded the surviving category from
consideration and analyzed only people who die within 28 day mark. For those
people we analyze the histograms of the number of people dying each day versus
the cytokine levels (Figure 6).

For each cytokine, the patient data is divided into two groups whose cytokine
levels are within the 50% percentile and those whose cytokine levels are beyond
that level. For both of these groups we have plotted the number of mortality-time
histograms and fitted the data to exponential e−λx. The parameter λ (average
death coefficient) is specific to each cytokine and identifies the likely-hood of a
person to die. It is then plotted as a function of cytokine in Figure 7.

As could be seen from the graph, the 14 cytokines identified initially could
be narrowed down to 2 specific cytokines, namely IL1B and MIP1A, which are
more correlated to mortality outcomes. These cytokines could be used for fur-
ther analysis of the association between the identified cytokines and mortality
outcomes.
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Fig. 5: Distribution of people who lived until the day shown.

Fig. 6: Distribution of cytokine levels.

3.3 Correlation of SNP and death

We perform GWAS with the binary trait of patient being alive or dead within
28 days, using the software package PLINK [4]. The association between each
SNP and patient survival rate iss analyzed using a χ2 test. The result is shown
in Figure 8, from which we can identify SNPs associated with survival with
confidence level p smaller than any threshold.

3.4 Correlation of SNP and cytokine levels

We further perform GWAS with the quantitative trait of the cytokine concen-
tration levels of the patients, also in PLINK. Least-square regression is used
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Fig. 7: The death coefficients for each cytokine.

Fig. 8: GWAS of patient survival. The suggestive line is at − log10(p) = 5. As
a demonstration the SNPs associated with patient survival with p < 10−5 are
labelled.

to associate each SNP to the cytokine level, and the analysis is done for each
of the 50 different cytokines tested. Remark that this study is also performed
with a binary trait of mean-split cytokine level. We find that using the binary
trait of cytokine level gives results of lower quality due to increased noise from
the imperfect splitting threshold. Therefore, we use here the results from the
quantitative trait of continuous cytokine levels. An example of the results, for
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the cytokine MCP3, is shown in Figure 9, where again we can identify the SNPs
that are highly correlated to the cytokine levels.

Fig. 9: GWAS of the level of the cytokine MCP3. The suggestive line is at
− log10(p) = 5. As a demonstration the SNPs associated with MCP3 level with
p < 10−20 are labelled.

3.5 Assembling results

The three-way intersection allows us to find five cytokines that are correlated
with a SNP located in a gene coding region of the human genome: GRO, MCP3,
IL1B, MIP1A and MIP1B. The SNP is located in an intron of a gene coding
the inhibitory subunit of a protein. Literature review reveals that the protein is
involved in the increase of cytokine levels in the body. Therefore, it is possible
that a SNP inhibiting the activity of the subunit will lead to the protein having
normal activity and increasing cytokine levels, aggravating symptoms of sepsis.

4 Conclusion and Discussion

With the VASST dataset, we analyzed the correlation between the cytokine con-
centration levels and patient survival and identified cytokines that were highly
related with patient death. To investigate this possible causal relationship, we
further performed two GWAS on patient survival and cytokine levels to corre-
late these traits to SNP signatures of the genome. We have been able to iden-
tify several SNPs which are significantly correlated with both patient survival
and at least one of the key cytokines related to patient mortality. It is there-
fore established that, certain cytokines cause patient death. We further clarified
a potential genetic mechanism of this causal relationship through a particular
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SNP which codes for a protein responsible for regulating cytokine levels. Due
to time restriction, we were not able to dive more in depth into this topic. It is
recommended that these identified SNPs and the associated key cytokines are
studied in more detail for their functions and related signaling pathways, and
they can be considered as potential drug targets for new therapy to treat sepsis.

Our dataset is small considering there are only 330 patients with both com-
plete genome data and cytokine measurements. A much larger dataset is desir-
able to confirm our finding in this study, and for training proper machine learning
models to make more accurate predictions. Investigating the connection of the
key SNPs and cytokines with other inflammatory diseases than sepsis is also a
valuable future study.

5 Supplementary Material

The Github repositories associated with this project are located at https:

//github.com/BigData2018ubc-stPaul, with three repos: GWAS-cytokines,
data-visualization, Notebooks.
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