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Introduction

What is our goal?

Given a data set from Comm 100 we predicted
the intent of conversations as well as clustered
each message.

We also analyzed probability of conversation
sentiment based on the clustering of the chat
transcripts.



Our Data

What does our data look like?

We were provided with several data sets to work with:

Sample data includes 7,000 conversation transcripts.
( 1 transcript from each chat session.)

Full data includes 59,082 conversation transcripts.
The scripts consists of several languages including
English and Mandarin.



[Agent]Brian - Comm100: Hello oguz, this is Brian. How can | help you?
[Visitorloguz: hi brian

[Agent]Brian - Comm100: Hi

[Visitorloguz: we have a problem about chat session

[Visitorloguz: 2 or 3 customers connected same session

[Agent]Brian - Comm100: What seems to be the issue?

[Visitorloguz: and customers chat together

[Agent]Brian - Comm100: Hi your colleague has reported this issue yesterday
[Visitor]loguz: yes Our members complain very much in this situation
[Agent]Brian - Comm100: It was because those users need to be separated.
[Agent]Brian - Comm100: | have reported to the developers

[Visitorloguz: yes, your personel give this link
https://betlive100.com/chatserver/chatwindow.aspx?planld=146&siteld=223641

[Agent]Brian - Comm100: And will let you know when fixed
[Agent]Brian - Comm100: Yes

[Visitorloguz: thank you

[Agent]Brian - Comm100: you are welcome

[Visitor]: The visitor has left the chat.






Prepared Data
1. Pulled Data

2. Cleaned Data

3. Structured Data

What did we do?

Vectorized Features

1.

Found statistics on
the words

Extracted keywords

by TFIDF

Attained sentiment
by TEXTBLOB

Clustering

1.

Refined
keywords by LDA
& K-Means

Performed NLP
using spaCy



From Chat Logs to Pandas
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Histogram of Polarity
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Histogram of Uppercase per Character

L] L

00 01 02 03 04 05 06 07
Percentage

Our Results

1

08




Histogram of Words per Character
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LDA dataframe
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Latent Dirichlet Allocation (LDA) Model

Document specific
distribution over
topics

Topic
distribution
over words
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Clustering Accuracy vs Number of Topics
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Radar Charts of each Cluster
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Our Results
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Our Results

on 6 datasets

Correlation of clustering distributions
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Data Visualization based on
sentiment analysis

So, how positive is our interaction with the customers?
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Future Intentions



What else can we do?

Markov Chain Message Modelling

Let state 1 be the first message of
the conversation.

Let the final state be the last
message in the conversation.

Let states 2-(n-1) be the clusters
from our analysis.

Let P be the transition matrix of
probabilities of transitioning
between message statesiand j.
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What else can we do?

Sentiment Analysis m

Text interpretation using SpaCy

What is
NOUN VERB

ldentifying sentences.
Identifying the interdependencies between the words.

Rasa NLU trainer based on SpaCy and Scikit-Learn

Determine intent of a particular sentence.
Associating intent with entities and values

Input: “Can | take a price for comm100 for 8 user?”
Intent: Inquiry (confidence)

Entity: Purchase

Value: Price

service?

NOUN



Work in Progress

Determining the intent of conversations based on
sentiment analysis

What is the main cause of negative interactions in
the transcript?

What similarities or keywords do the positive and
negative messages have in common?

Improve services based on the features that most
people are complaining about.



A Better Chatbot?

Context Specific
Give the right answer
Starting with identifying the topic
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Transcripts & Reports
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Setup & Getting Started
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Desktop & Mobile Apps
Billing & Management
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Monitor &
Chat

Settings & Customizations




Next Steps?

Additional Sub-categories
Integration With Knowledge Base
Chatbot Development










